Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 128: 102089, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004588

RESUMO

Antimalarial drugs have been suggested as promising scaffolds with anti-tubercular activities. In this work, we demonstrated, for the first time, the effectiveness of tafenoquine against mycobacteria. Firstly, tafenoquine inhibited the growth of Mycobacterium smegmatis and Mycobacterium tuberculosis with lower MICs values as compared to other antimalarial drugs, such as mefloquine, chloroquine, and primaquine. Importantly, tafenoquine was active against three multi-drug resistant strains of M. tuberculosis with MIC values similar to pan-sensitive strains, suggesting that tafenoquine is capable of evading the major mechanisms of resistance found in drug-resistant clinical isolates of M. tuberculosis. Importantly, tafenoquine displayed a synergistic effect when combined with mefloquine. In addition, tafenoquine displayed an improved activity compared to the groups treated with both isoniazid and rifampicin in the six-week nutrient starved M. tuberculosis cultures. This finding suggests that further investigations of tafenoquine against dormant mycobacteria are worth pursuing. Moreover, different concentrations of tafenoquine ranging from 1.25 to 80 µM displayed different effects against M. tuberculosis, from moderate (reduction of a 1.8 log CFU/mL) to potent bactericidal (reduction of a 4.2 log CFU/mL) activities. Tafenoquine may represent a hit for further drug optimization and for future clinical development as a new anti-mycobacterial agent, especially in cases of resistant and/or dormant forms of tuberculosis.


Assuntos
Aminoquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Rifampina/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33551106

RESUMO

Excess fluoride in water can produce changes in tooth enamel mineralization and lead to diseases such as dental or skeletal fluorosis. The present study aimed to assess the genotoxic effects, oxidative stress, and osteoblastic mineralization induced by fluorosilicic acid (FA) in murine bone marrow-derived mesenchymal stem cells (BM-MSCs). BM-MSCs were isolated from the femurs and tibias of rats and cultured under standard conditions. Cells exposure occurred for 3, 7, 14, and 21 days to different concentrations of FA (0.6-9.6 mg/L). Cytotoxicity was observed in 14 and 21 days of exposure for all concentrations of FA (cell proliferation below 60%), and for 3 and 7 days, in which the proliferation was above 80%. Alkaline comet assay results demonstrated significant increased damage at concentrations of 0.3-2.4 mg/L, and the micronucleus test showed increased rates for micronucleus (1.2-2.4 mg/L) and nuclear buds (NBUDs) (0.3-2.4 mg/L) (P < 0.05/Dunnett's test). An alkaline comet assay modified by repair endonuclease (FPG) was used to detect oxidized nucleobases, which occurred at 0.6 mg/L. The oxidative stress was evaluated by lipid peroxidation (TBARS) and antioxidant activity (TAC). Only lipid peroxidation was increased at concentrations of 0.6 mg/L and 1.2 mg/L (P < 0.001/Tukey's test). The osteogenesis process determined the level of extracellular matrix mineralization. The mean concentration of Alizarin red increased significantly in 14 days at the 0.6 mg/L concentration group (P < 0.05/Tukey's test) compared to the control group, and a significant difference between the groups regarding the activity of alkaline phosphatase (ALP) was observed. Unlike other studies, our results indicated that FA in BM-MSCs at concentrations used in drinking water induced genotoxicity, oxidative stress, and acceleration of bone mineralization.


Assuntos
Medula Óssea/patologia , Dano ao DNA , Fluoretos/toxicidade , Células-Tronco Mesenquimais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Silícico/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Peroxidação de Lipídeos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...